Symplectic structure of wave-equation imaging: a path-integral approach based on the double-square-root equation

نویسندگان

  • Maarten V. de Hoop
  • Jérôme H. Le Rousseau
  • Biondo L. Biondi
چکیده

S U M M A R Y We carry out high-frequency analyses of Claerbout’s double-square-root equation and its (numerical) solution procedures in heterogeneous media. We show that the double-square-root equation generates the adjoint of the single-scattering modelling operator upon substituting the leading term of the generalized Bremmer series for the background Green function. This adjoint operator yields the process of ‘wave-equation’ imaging. We finally decompose the wave-equation imaging process into common image point gathers in accordance with the characteristic strips in the wavefront set of the data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seismic inverse scattering in the ‘wave-equation’ approach

In this paper we use methods from partial differential equations, in particular microlocal analysis and theory of Fourier integral operators, to study seismic imaging in the wave-equation approach. Seismic data are commonly modeled by a high-frequency single scattering approximation. This amounts to a linearization in the medium coefficient about a smooth background. The discontinuities are con...

متن کامل

Microlocal analysis of wave-equation imaging and generalized-screen propagators

The imaging procedure of reflection seismic data can be generated by an extension of the ‘double-square-root equation’ to heterogeneous media, which yields the process of waveequation imaging. We carry a high-frequency analysis of the wave-equation imaging operator and show that it is microlocally equivalent to asymptotic approaches (e.g., MaslovKirchhoff/GRT). In an imaging-inversion procedure...

متن کامل

Seismic Wave-Field Propagation Modelling using the Euler Method

Wave-field extrapolation based on solving the wave equation is an important step in seismic modeling and needs a high level of accuracy. It has been implemented through a various numerical methods such as finite difference method as the most popular and conventional one. Moreover, the main drawbacks of the finite difference method are the low level of accuracy and the numerical dispersion for l...

متن کامل

New analytical soliton type solutions for double layers structure model of extended KdV equation

In this present study the double layers structure model of extended Korteweg-de Vries(K-dV) equation will be obtained with the help of the reductive perturbation method, which admits a double layer structure in current plasma model. Then by using of new analytical method we obtain the new exact solitary wave solutions of this equation. Double layer is a structure in plasma and consists of two p...

متن کامل

A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation

In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001